26 research outputs found

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link

    MCI Cancellation for Multi-Code Wideband CDMA

    Get PDF
    This paper proposes a mutlipath interference canceller (MPIC) associated with orthogonal code-multiplexing that achieves much higher peak throughput than 2 mb/s with adaptive data modulation for high-speed packet transmission in the wideband direct sequence-code division multiple access (W-CDMA) forward link, and evaluates its throughput performance by computer simulation. The simulation results elucidate that sufficient multipath interference (MPI) suppression is achieved by a four-stage MPIC with 6–12 orthogonal code-multiplexing using one iterative channel estimation with pilot and decision feedback data symbols and further that the interference rejection weight control according to the number of observed multipaths is effective in improving the throughput. It is also demonstrated that MPIC exhibits a superior MPI suppression effect to a chip equalizer in the lower received signal energy per bit-to-background noise spectrum density ( 0) channel around 0–3 dB owing to the successive channel estimation at each stage. We show that the maximum peak throughput using MPIC is approximately 2.1 fold that without MPIC in a two-path and three-path Rayleigh fading channel and that the peak throughput of 8.0 mb/s is achieved using 64QAM data modulation in a two-path fading channel within a 5-MHz bandwidth. Furthermore, the required average 0 for satisfying the same throughput with MPIC is decreased by more than 2.0 dB. MPIC utilizes an efficient high-level data modulation scheme and is very effective in extending the coverage in which much higher throughput can be provided under multipath fading channels for high-speed packet transmission in the W-CDMA forward link

    Downlink Transmission of Broadband OFCDM Systems Part I: Hybrid Detection

    Get PDF
    The broadband orthogonal frequency and code division multiplexing (OFCDM) system with two-dimensional spreading (time and frequency domain spreading) is becoming a very attractive technique for high-rate data transmission in future wireless communication systems. In this paper, a quasianalytical study is presented on the downlink performance of the OFCDM system with hybrid multi-code interference (MCI) cancellation and minimum mean square error (MMSE) detection. The weights of MMSE are derived and updated stage by stage of MCI cancellation. The effects of channel estimation errors and sub-carrier correlation are also studied. It is shown that the hybrid detection scheme performs much better than pure MMSE when good channel estimation is guaranteed. The power ratio between the pilot channel and all data channels should be set to 0.25, which is a near optimum value for the two-dimensional spreading system with time domain spreading factor (NT) of 4 and 8. On the other hand, in a slow fading channel, a large value of the channel estimation window size ?NT, where ? is an odd integer, is expected. However, ?=3 is large enough for the system with NT=8 while ?=5 is more desirable for the system with NT=4. Although performance of the hybrid detection degrades in the presence of the sub-carrier correlation, the hybrid detection still works well even the correlation coefficient is as high as 0.7. Finally, given NT, although performance improves when the frequency domain spreading factor (NF) increases, the frequency diversity gain is almost saturated for a large value of NF (i.e., NF ? 32)

    Downlink Transmission of Broadband OFCDM Systems - Part II: Effect of Doppler Shift

    Get PDF
    The orthogonal frequency and code division multiplexing (OFCDM) system with 2-D spreading (time- and frequency-domain spreading) is becoming a promising candidate for future broadband wireless communication systems. OFCDM is more attractive than orthogonal frequency-division multiplexing (OFDM) both by introducing frequency-domain spreading for frequency diversity provision and time-domain spreading for flexible data rate provision. To provide high-speed mobile services, multitude transmission is employed in conjunction with OFCDM. In a Gaussian or flat-fading channel, multicode channels are orthogonal. However, in a realistic wireless channel, the orthogonality no longer maintains. Thus, multicode interference (MCI) is caused. This paper focuses on the investigation of the effect of Doppler shift on the downlink transmission of high-speed mobile OFCDM systems. A practical channel estimation algorithm based on a code-multiplexed pilot channel is employed to track the variations of fading channels. Hybrid MCI cancellation and minimum mean-square error (MMSE) detection proposed by the authors is employed as an efficient way to eliminate the MCI in the frequency domain. The system performance is analytically studied with imperfect channel estimation to show how it is affected by parameters such as the window size in the channel estimation, Doppler shift, the number of stages of the hybrid detection, the power ratio of pilot to data channels, spreading factor, and so on. © 2006 IEEE.published_or_final_versio
    corecore